Tumor and Stem Cell Biology The Antioxidant Tempol Reduces Carcinogenesis and Enhances Survival in Mice When Administered after Nonlethal Total Body Radiation
نویسندگان
چکیده
There is significant interest in the development of agents that can ameliorate radiation damage after exposure to radiation has occurred. Here we report that chronic supplementation of the antioxidant Tempol in the diet of mice can reduce body weight without toxicity, decrease cancer, and extend survival when administered after nonlethal total body radiation (TBI). These effects were apparent in two different strains of mice (C3H, CBA) exposed to TBI (3 Gy). Notably, delaying administration of the Tempol diet one month after TBI could also enhance survival. Tempol reduced the incidence of hematopoietic neoplasms (lymphomas) in both strains, whereas both the onset and incidence of nonhematopoietic neoplasms were reduced in CBA mice. These results encourage further study of Tempol as a chemopreventive, to reduce the incidence of radiation-induced second malignancies after a course of definitive radiation therapy. Tempol may also find applications to reduce the risk of cancers in populations exposed to nonlethal radiation due to nuclear accidents or terrorist attacks. Cancer Res; 72(18); 4846–55. 2012 AACR.
منابع مشابه
The antioxidant tempol reduces carcinogenesis and enhances survival in mice when administered after nonlethal total body radiation.
There is significant interest in the development of agents that can ameliorate radiation damage after exposure to radiation has occurred. Here we report that chronic supplementation of the antioxidant Tempol in the diet of mice can reduce body weight without toxicity, decrease cancer, and extend survival when administered after nonlethal total body radiation (TBI). These effects were apparent i...
متن کاملRadioprotection by tempol: Studies on tissue antioxidant levels, hematopoietic and gastrointestinal systems, in mice whole body exposed to sub- lethal doses of gamma radiation
Background: Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in cell death. Wholebody exposure of mice to gamma radiation leads to diminution of tissue antioxidant defense systems increases the peroxidative damage to membrane lipids and damages the haematopoietic and gastrointestinal systems. Tempol (TPL), a cell membranep...
متن کاملAntitumor Activity and In Vivo Antioxidant Status of Mucuna Pruriens (Fabaceae) Seeds against Ehrlich Ascites Carcinoma in Swiss Albino Mice
The aim of the present study is to evaluate the antitumor effect and antioxidant role of Mucuna pruriens (Family: Fabaceae) against EAC bearing Swiss albino mice. The effect of methanol extract of Mucuna pruriens (MEMP) on tumor growth and hosts survival time was studied by the following parameters: tu-mor volume, packed cell volume, viable and non-viable cell count and life span of the host. M...
متن کاملEffect of human amnion-derived multipotent progenitor cells on hematopoietic recovery after total body irradiation in C57BL/6 mice
Background: The hematopoietic system is sensitive to the adverse effects of ionizing radiation. Cellular therapies utilizing mesenchymal stem cells or vascular endothelial cells have been explored as potential countermeasures for radiation hematopoietic injuries. We investigated cells cultured from amnion ...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کامل